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Abstract. We apply the Painlevt test to the Kuramoto-Sivashinsky non-linear partial 
differential equation, which describes many interesting fluid motions. The equation passes 
the test in a weak sense. Although the Painlevt analysis does not yield the general solution, 
we perform the Backlund transformation in order to obtain new particular solutions. We 
find explicitly all the solutions of the set of equations which define the PainlevC-Backlund 
transformation: they reduce to only one type, namely the already known kink-shaped 
solitary wave. 

1. Introduction 

The Kuramoto-Sivashinsky (KS) equation is a model partial differential equation (PDE) 
frequently encountered in the study of continuous media which exhibits a chaotic 
behaviour. In its conservative form, it is 

U, + uu, + /Lux, + vu,,,, = 0. (1.1) 
This describes, for instance, the fluctuation of the position of a flame front, or the 
motion of a fluid going down a vertical wall, or a spatially uniform oscillating chemical 
reaction in a homogeneous medium. A recent review can be found in a Les Houches 
lecture [ 11. This equation also arises from the minimal ingredients necessary to observe 
interesting bifurcations in a simplified equation for a complex amplitude in fluid 
dynamics [2]. 

Equation (1.1) is invariant under a Galilean transformation 

( U , X , t ) - , ( U + C , X - c C t , t ) .  (1.2) 
We make no assumption on the signs of p and v, which can obviously be rescaled to 
*l. The purpose of this work is to look for new analytical solutions using the 
PainlevC-Backlund transformation, which will be described below. Particularly, some 
special solitary waves which have been numerically observed (see figure 2 of [3] and 
figure 7 of [4]) cannot be represented by the known kink-shaped analytical solution 
of Kuramoto and Tsuzuki [5]. In 02, we recall some generalities on the PainlevC 
analysis of non-linear partial differential equations (NLPDE); this section can be omitted 
by readers knowing this technique. Its application to the KS equation is described in 
§ 3. 
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In § 4, we apply to the KS equation the Backlund formalism arising from the 
condition for truncating the PainlevC expansion. From the four PainlevC-Backlund 
equations, we build an equivalent set of four equations invariant under a group of 
homographic transformations; this invariance property enables us to find all the 
solutions of the set of Painlevi-Backlund equations. These solutions reduce to only 
one class, comprised of the kink-shaped stationary waves mentioned above, obtained 
from the Kuramoto and Tsuzuki solution by making the Galilean transformation (2.2). 
The PainlevC analysis does not allow us to find new analytical solutions. 

The computer algebra program [ 6 ]  for PainlevC expansion, Backlund transformation 
and invariant equations applied to NLPDE with a polynomial non-linearity has been 
written in the AMP language [7]. 

2. Painleve analysis: generalities 

An essential question in the study of NLPDE is the nature of the singularities of the 
solutions (poles, branch points or essential singularities) and their position (fixed or 
movable). 

For this purpose, the PainlevC analysis, which has been renewed by Ablowitz et a1 
[8] for ordinary differential equations (ODE), has been extended to PDE by Weiss er a1 
[ 9 ] .  It consists in looking for the general solution of the PDE in the form (written here 
in the case of one dependent and two independent variables): 

where p is negative, p(x, r )  = 0 is the equation of a non-characteristic (cpxcp, # 0) singular 
manifold, and the functions uj have to be determined by substitution of expansion 
(2.1) in the PDE, which becomes: 

+m 1 E j ( U O , .  . * , uj, c p ) c p j + 4  = 0 
j = O  

where q is some negative constant. El depends on cp only by the derivatives of cp. 
The successive practical steps of PainlevC analysis are the following. 
(i)  Determine the possible leading orders p by balancing two or more terms of the 

(ii) Solve equation Eo=O for non-zero values of uo ;  this may lead to several 

(iii) Find the resonances, i.e. the values of j for which uj cannot be determined 

V j > O  E , r ( j + l ) P ( j ) g c ~ c p : - k u j + Q ( u o , .  . ., u j - ] ,  p)=O (2.3) 

where n is the order of the PDE, 0 s  k 4 n, and P a polynom of degree n - 1. The 
values of the resonances are the zeros of P. 

(iv) Determine if the resonances are ‘compatible’ or not. At a resonance, after 
substitution in (2.3) of the previously computed U [ ,  1 s j  - 1, the function Q is either 
zero, in which case uj can be arbitrarily chosen and the resonance is said to be 
compatible, or non-zero, and the expansion (2.1) does not exist for arbitrary cp. 

The PainlevC property is characterised by the fact that p is a negative integer and 
all resonances occur at positive integer values of j and are compatible. 

PDE and expressing that they dominate the other terms. 

solutions, called branches. 

from equation Ej = 0. This last equation has usually the form: 
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3. PainlevC analysis of the Kuramoto-Sivashinsky equation 

We find that the dominant terms are uu, and vuxxxx (let us remark that it will therefore 
be forbidden to take the limit v + O  in the KS solution obtained by this analysis in 
order to recover the solution of the Burgers equation). The leading power is p = -3 
and the first coefficient is 

ug = 120VQi. (3.1) 

P ( j ) = ( j - 6 ) ( j 2 - 1 3 j + 6 O ) v  (3.2) 

In this case 

and the resonances are j = 6 and j = q* i&%. Since the three resonances are not all 
located at positive integers, there is no way to obtain the general solution of equation 
(1.1) in the form (2.1). Nevertheless, we may still obtain a solution depending on two 
arbitrary functions. In order to examine the nature of the resonance located at j = 6 ,  
we must compute the coefficients uj up t o j  = 6 and we list here the next three coefficients: 

(3.3) 

(3.4) 

U3 = - (0, / Qx + 15 v (- Qxxxx/ Qx + 2Qxx(Pxxx/ Cp: - Q ix/ Q’,) - %PQxx/ Qx. (3.5) 

As already observed by Fournier and Spiegel [ lo ] ,  the resonance j = 6 is compatible. 
We can even show that the compatibility condition, which is identically satisfied, has 
the following nice structure: 

(3.6) E 6- = - ( Q - ~ E  x 5 ) x -i( 2 ~ ; 1 ( ~ ; 1 E 4 ) x ) x - ~ ( ( p ; 1 ( ( p ; 1 ( ( p ~ 1 E 3 ) x ) x ) x  

if u0, u1 and u2 have already been replaced by their expression. 
From the above analysis, we conclude that the Painlevt expansion yields a solution 

depending only on two arbitrary functions Q and u 6 ,  and therefore we do not have 
the general solution. This is an indication, not a proof, of non-integrability (for an 
analytical proof of non-integrability of the KS equation, see Nicolaenko et a1 [ 111; for 
a ‘computer proof’, see Thual and Frisch [12]). Thus the KS equation can be said to 
pass the PainlevC test not in the strict sense (all resonances occur at positive integers 
and are compatible), but in a weak sense (all resonances which appear at positive 
integers are compatible). 

4. The PainlevbBacklund transformation for the KS equation 

The PainlevC expansion (2.1) representing a solution of equation (1.1) can be truncated 
[13] at j = 3 :  

=60v(log Qc)xxx+%l*.(lOg P I X + %  (4.1) 

Ej(Q,  ~ 3 )  = O  j = 3 , .  . . , 7 .  (4.2) 

provided u3 and Q satisfy the set of five equations 

Then equation (4.1) defines an auto-Backlund transformation, i.e. a transformation 
between two solutions u3 and U of the same equation, and we will call equations (4.2) 
Painlevi-Backlund equations. 
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Instead of E,, we will prefer to consider Q ~ - ~ E ~ ,  which we will again denote E,, 
for it is invariant under the group of linear transformations 

Q + UQ f b. (4.3) 
Equation E3 = 0 gives the expression of u3 in terms of the derivatives of Q (see equation 
(3.5)). Expression E,  is functionally dependent on E , ,  E4 and E5 because of the 
compatibility of the resonance at j = 6. Equation E, = 0 is simply equation ( 1 )  taken 
for u3.  Substituting the expression of u3 in the other equations, we obtain four equations 
depending only on the derivatives of Q, and these four equations have a nice property 
which considerably simplifies the search of their common solutions. Indeed, expression 
E4 is invariant under the group of homographic transformations 

Q + ( a 9  + b) / (CQ + d )  (4.4) 
and this is also the case for expressions sj defined by 

(7 - k)! j - k  

Ek j = 4 ,  . . . ,  7. 
( 7 - j ) ! ( j - k ) !  

(4.5) 

As a consequence, expressions g,, which we will simply denote EJ from now on, can 
be expressed only in terms of two homographic invariants, namely the Schwarzian 
derivative of Q 

S={Cp, X I =  Q x x x l Q x - t ( Q x x l Q x ) 2  (4.6) 

c = -Cp,/Q, (4.7) 

and 

which has the dimension of a velocity. These two invariants are linked by the cross- 
derivative condition 

( Q t ) x x x  = ( Q x x x ) t  (4.8) 

s, + e,,, + 2 c,s + cs, = 0. (4.9) 

which is expressed as 

Finally, the set of five equations (4.2) is equivalent to: 

20p v 
6v2S,,+4v2S2+- 

19 

7v2S,,+3v2s2+- 
19 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

where f (  E d ,  E,) is an expression vanishing with E4 and E , .  

three invariant equations, E4 = 0, E ,  = 0, E7 = 0, is 
In the appendix, we show that the only function Q satisfying simultaneously the 

(4.14) 
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where c is arbitrary, a, p, y, 6 are arbitrary constants subject to 

a8 - p y  # 0 (4.15) 

and k can take only four values: * or 
19v 19u 

k 2 = -  -P (4.16) 

Defining usi,,(cp) as the singular part in cp of the Painlevt expansion (2.1) 

Using(V) = ~ , c p - ~ +  u , ( P - ~ +  U ~ C P - '  (4.17) 

(4.18) = 6 0 4 0 g  cp)xx, +%/l(log c p ) ,  

we obtain the general solution of the Painlevt-Backlund equations and find 

3 0 ~ k  
19 

u3 = c --+ using( y + s ekix-cr)) (4.19) 

(4.20) 

This solution can be interpreted as a triplet 

(cp(alP, Y l S ) ,  u ( a l P ) ,  U 3 ( Y / S ) )  (4.21) 

characterised by the two parameters a lp ,  y l 6 ,  and we cannot choose u3 and cp 
independently in order to perform the Backlund iteration 

(4.22) U ( 1 + ' )  = us,ng(cp(l)) + U([). 
In our case, the iteration is simply defined as 

a,+l/p,+I is arbitrary Yl+1/Sl+1= .I/PI (4.23) 

which maps a triplet ( c p ' j ) ,  ~ ( j ) ,  u y ' )  as defined by (4.21) onto a triplet ( c p ( ' + ' ) ,  u ( ~ + ' ) ,  
u ( 3 i + l ) ) .  

- ,  

Starting from the constant trivial solution of ( 1 . 1 )  for U$") (i.e. (ao ,  Po,  yo, So) with 
yoSo = 0), we will forever remain inside the class of a solution U given by (4.20), which 
is simply the steady solution of Kuramoto and Tsuzuki after having performed a 
Galilean transformation of velocity c: 

(4.24) u i i )  = c + (:$Fk - 15vk3) tanh(46'") + 15uk3 tanh3(46(") 

with 

ti') = k ( x  - ct)  +log (a i /&) .  (4.25) 

We notice that equation (4.24) represents three distinct types of real solutions, namely: 

kink-shaped regular 
kink-shaped singular 

k real, a l p  positive: 
k real, a l p  negative: 
k purely imaginary: periodic singular. 
The solution which comes out of the Painlev6 analysis is in agreement with the 

result [14] that the KS equation has no solution which is a rational fraction of more 
than one exponential whose argument is linear in x and t. 

Another similar auto-Backlund transformation is found when studying the equation 

U, - U: - 2UU,, + = 0 (4.26) 
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(see formula (8.20) of Weiss [13]). The leading power is -2 and the resonances are: 
j = 8 compatible, j = f (7  * in). The Painlevt analysis gives: 

(4.27) 

(4.28) 

E, = q ( 2 C  - 5S,) = 0 (4.29) 

(4.30) E 4-:S(-S2-2C,)=0 =- 

(4.31) 

(4.32) 

and it is remarkable that formula (4.5) also describes the transformation from non- 
invariant to invariant equations, if one changes 4 and 7 to 3 and 6, respectively. The 
set of four invariant equations has a unique common solution C = 0, S = 0, which also 
satisfies the compatibility condition. The general solution (9, U ,  U * )  is: 

c P = ( a + P x ) l ( r + S x )  U = " ( x + a / p ) - 2  u 2 = $ ( x +  y/S)-Z (4.33) 

where a, p, y, S are arbitrary constants, aS - B y  # 0. The Backlund iteration is also 
given by (4.23) and the generated solutions remain in the one-parameter family 

{ q ( x  + c ) - 2 ,  c E R}. (4.34) 

5. Conclusion 

We have proven the consistency of the equations which define the Painlevk-Backlund 
transformation and given their general solution. However, the restriction on the form 
of cp for the consistency conditions to be satisfied does not allow us to build new 
analytical solutions. 

Appendix. General solution of invariant equations 

We show here that the three invariant equations E 4 = 0 ,  E,=O, E7=0 (formulae 
(4.11)-(4 i3))  have the only common solution: 

where a, P, y, S are arbitrary constants subject to a8 - P y  # 0, k 2  takes one of the two 
values -p/(19v)  or l l p / (19v) ,  and c is an arbitrary real constant. 

Since the first two equations E4 = 0 and E5 = 0 do not explicitly depend on t and 
allow the elimination of one of the two unknown functions ( S ,  C),  the method of 
solution is the following: 

(a) eliminate C between equations E4 = 0 and E5 = 0, which leads to a new system 
of two equations easily solvable; 
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(b) retain only those solutions which also satisfy the cross-derivative condition 

(c) for every solution ( S ,  C), determine the function 9. 
We start by integrating equation E, = 0 with respect to x: 

(3.9) and equation E,  = 0; 

F5 7 v2SXx + 3 v2S2 + E p  VS - 3 vC, - A = 0 ('42) 

where A is a function of t only. 
Then, eliminating C, between equations E4 = 0 and Fs = 0, we get: 

1opv 33p2 
S+2A--=O. 4v2SX,+6v2S2+- 

192 19 

This is a second-order ordinary differential equation for S and has two kinds of 
solutions, general and singular, as discussed below. 

The general solution of (A3) is 

where 9 is the Weierstrass elliptic function 8(x-x0( t ) ,  g 2 ( t ) ,  g 3 ( t ) ) ,  xo and g3 are 
arbitrary functions and 

A 223p2 g 2 = - - +  
4v2 48 x 192v2' 

The associated value of C, is 

2 80P 112p2 
C, = - 4 0 ~ 9  -- 9 + 6vg2 - - 57 9 x 192v 

which by integration gives 

in which l is another Weierstrass elliptic function l ( x -xo( t ) ,  g 2 ( t ) ,  g 3 ( f ) ) ,  8' is the 
derivative of 9 with respect to its first argument and g, is an arbitrary function of t. 
When we substitute the solution ((A4), (A7)) in the cross-derivative condition (4.9) 
and express that its Taylor expansion in (x - xo( t ) )  must identically vanish, we find 
for the leading term 

('48) T v ( x - x O ( t ) ) p + .  3520 * .  

which means that this solution must be rejected. 

solution with particular values of xo and g , ,  is given by one of the two roots of 
The singular solution (S, ,  = 0) of (A3), which cannot be obtained from the general 

p+A S + - -  A l lp2  
3 x 1 9 ~  3 v 2  

which implies that S is independent of x. 
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From the set of equations (4.9), (4.11) and (A9), we derive 

c = -2ux s2+- 5cL s- 'lcL2 ) + K l  ( 19u 4X1g2u2 

5P S'( t )  = -4vs s2 + - s - ( 19u 4 x 1 9 ' ~ ~  

5P A =  -3u2  S 2 + - S -  ( 57u 2X1g2u2 

where K1 is an arbitrary function of t. Since function C is linear in x and function S 
independent of x, equation E, = 0, which reduces to 

(A13) c, + CC, = 0 

implies that 

5P l l / . L 2  s2+- s- 
19u 4 x  1g2u2=0 

and K ,  is a constant, which we denote c. The two values of S are: 

-11p 
S2=-. Y s, =- 

2 X 19u 2 x 1 9 ~  

The theory of non-linear differential equations (see, e.g., Hille [ 151 theorem 10.1.1) 
says that the general solution of equation {cp, x} = r is 

ay1 + PY2 

YYI + SY2 
c p =  

where a, p, y, S are arbitrary constants such that a8 - p y  f 0, and y ,  and y 2  are two 
independent solutions of the linear equation: 

Denoting k2 = -2S, we obtain for cp the announced expression ( A l ) .  

References 

[ l ]  Manneville P 1988 The Kuramoto-Sivashinsky equation: a progress report Propagation in Systems Far 
from Equilibrium (Les Houches, March 1987) ed J Wesfreid, H R Brand, P Manneville, G Albinet 
and N Boccara (Berlin: Springer) pp 265-80 

[2] Coullet P, Gil L and Lega J 1988 Defect-mediated turbulence Phys. Rev. Le??. in press 
[3] Chang H-C 1986 Traveling waves on fluid interfaces: Normal form analysis of the Kuramoto- 

[4] Toh S 1987 Statistical model with localized structures describing the spatio-temporal chaos of 

[5] Kuramoto Y and Tsuzuki T 1976 Persistent propagation of concentration waves in dissipative media 

[6] Conte R 1989 in preparation 
[7] Drouffe J-M 1986 A M P  Reference Manual (uersion 6.6) DPhT, CEN Saclay 
[SI Ablowitz M J,  Ramani A and Segur H 1980 A connection between nonlinear evolution equations and 

ordinary differential equations of P type, part 1 J. Math. Phys. 21 715-21; 1980 A connection between 
nonlinear evolution equations and ordinary differential equations of P type, part I1 J. Marh. Phys. 
21 1006-15 

Sivashinsky equation Phys. Fluids 29 3142-7 

Kuramoto-Sivashinsky equation J. Phys. Soc. Japan 56 949-62 

far from thermal equilibrium Prog. meor. Phys. 55 356-69 



Kuramoto-Sivashinsky equation 177 

[9] Weiss J, Tabor M and Carnevale G 1983 The PainlevC property for partial differential equations J. 

[ IO]  Fournier J-D and Spiegel E A 1987 Meromorphic integrals of the equations of phase chaos Preprint 
[ I13  Nicolaenko B, Scheurer B and Temam R 1986 Attractors for the Kuramoto-Sivashinsky equations 

Lectures in Applied Mathematics 23 149-70 (AMS) 
[12] Thual 0 and Frisch U 1986 Natural boundary in the Kuramoto model Combustion and Nonlinear 

Phenomena (Les Houches, March 1984) ed P Clavin, B Larrouturou and P PelcC (Les Ulis: Editions 
de Physique) pp 327-36 

[I31 Weiss J 1983 The PainlevC property for partial differential equations: 11. Backlund transformation, Lax 
pairs, and the Schwarzian derivative J. Math. Phys. 24 1405-13 

[ 141 Cornille H and Gervois A 1983 unpublished 
[ I51  Hille E 1976 Ordinary Diferential Equations in the Complex Domain (New York: Wiley) 

Marh. Phys. 24 522-6 


